An analytical approximation scheme to two-point boundary value problems of ordinary differential equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys. A: Math. Theor. 40 F215
(http://iopscience.iop.org/1751-8121/40/9/F01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 03/06/2010 at 06:33

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

An analytical approximation scheme to two-point boundary value problems of ordinary differential equations

Bruno Boisseau ${ }^{1}$, Péter Forgács ${ }^{1,2}$ and Hector Giacomini ${ }^{1}$
${ }^{1}$ Laboratoire de Mathématiques et Physique Théorique CNRS, Université François Rabelais Tours, Fédération Denis Poisson Parc de Grandmont, 37200 Tours, France
${ }^{2}$ MTA RMKI, H-1525 Budapest, PO Box 49, Hungary

Received 5 December 2006
Published 14 February 2007
Online at stacks.iop.org/JPhysA/40/F215

Abstract

A new (algebraic) approximation scheme to find global solutions of twopoint boundary value problems of ordinary differential equations (ODEs) is presented. The method is applicable for both linear and nonlinear (coupled) ODEs whose solutions are analytic near one of the boundary points. It is based on replacing the original ODEs by a sequence of auxiliary first-order polynomial ODEs with constant coefficients. The coefficients in the auxiliary ODEs are uniquely determined from the local behaviour of the solution in the neighbourhood of one of the boundary points. The problem of obtaining the parameters of the global (connecting) solutions, analytic at one of the boundary points, reduces to find the appropriate zeros of algebraic equations. The power of the method is illustrated by computing the approximate values of the 'connecting parameters' for a number of nonlinear ODEs arising in various problems in field theory. We treat in particular the static and rotationally symmetric global vortex, the skyrmion, the Abrikosov-Nielsen-Olesen vortex, as well as the 't Hooft-Polyakov magnetic monopole. The total energy of the skyrmion and of the monopole is also computed by the new method. We also consider some ODEs coming from the exact renormalization group. The ground-state energy level of the anharmonic oscillator is also computed for arbitrary coupling strengths with good precision.

PACS numbers: $02.30 . \mathrm{Hq}, 02.30 . \mathrm{Mv}, 02.60 . \mathrm{Lj}, 11.27 .+\mathrm{d}$

It occurs quite often in physics (but of course also in other areas of science) that we have to solve (singular) two-point boundary value problems (2 p BVP) associated with a system of ODEs. An important class of such BVPs for linear ODEs arises from eigenvalue problems of the stationary Schrödinger equation either in one dimension or reduced to an ODE with some (e.g. rotational) symmetry. Another large class of 2 p BVPs for nonlinear ODEs stems from the equations of motion of classical field theories reduced to ODEs (e.g. with some
symmetries) and one could easily continue the list. We start with the example of the static, rotationally symmetric global vortex in a Ginzburg-Landau effective theory [1], which has numerous applications ranging from condensed matter to cosmic strings, see [2, 3]. The field equation determining the vortex profile can be written as

$$
\begin{equation*}
f^{\prime \prime}(r)+\frac{1}{r} f^{\prime}(r)+\left(1-\frac{n^{2}}{r^{2}}\right) f(r)-f^{3}(r)=0, \tag{1}
\end{equation*}
$$

where $f(r)$ is a real function, $f^{\prime}=\mathrm{d} f / \mathrm{d} r$, and $n \in \mathbb{Z}$ corresponds to the vorticity. The physically interesting, globally regular solutions of equation (1) satisfy the following boundary conditions (BC):

$$
\begin{equation*}
f(r \rightarrow 0)=k_{n} r^{n}+\mathcal{O}\left(r^{n+2}\right), \quad f(r \rightarrow \infty)=f_{\infty}=1 \tag{2}
\end{equation*}
$$

and then a major problem of the 2 p. BVP amounts to find the value(s) of the free parameter, k_{n}, to ensure the BC of $f(r)$ at $r=\infty$.

It is not too difficult to integrate numerically equation (1), e.g., by the 'shooting' method from $r=0$ to some large value of r and determine k_{n} to some precision but it is considerably more difficult to obtain analytical results. The aim of this communication is to present a new analytic procedure to approximate the value of k_{n} for the connecting trajectory involving only algebraic steps. Its basic input is the power series expansion of the solution around a point of analyticity (typically at $r=0$) and the BC at $r=\infty$. With this input our method reduces the connection problem for k_{n} to find the corresponding root of a polynomial equation. The method is conceptually very simple, it is easy to apply and moreover it yields good approximations for various ODEs. Our method is heuristic, we cannot put it on a mathematically rigorous footing as yet, nor can we precisely define the class of ODEs to which it is applicable. Nevertheless, it seems to us that with regard to its simplicity and its large applicability the new method is of considerable interest for many applications (it yields with little effort good results for the connection parameters of many nonlinear ODEs, the energy levels of the quartic anharmonic oscillator for arbitrary values of the coupling, etc).

We illustrate our method in detail on the example of the global vortex (1). The first step is to introduce the following sequence of auxiliary first-order polynomial (implicit) ODEs of the form

$$
\begin{equation*}
F^{N}\left(f^{\prime}, f\right):=f^{\prime N}+G_{1}(f) f^{\prime N-1}+\cdots+G_{N-1}(f) f^{\prime}+G_{N}(f)=0, \quad N=1,2 \ldots, \tag{3}
\end{equation*}
$$

where $G_{i}(f)=\sum_{j} G_{i j} f^{j}$ is a polynomial in f with constant coefficients. Such implicit ODEs are not easy to handle in general, however, as it will be shown here, one can squeeze out some important information from the sequence $\left\{F^{N}\left(f^{\prime}, f\right)=0\right\}$ without having to solve them. The next step in our method is the determination of the unknown coefficients $G_{i j}$ in $F^{N}\left(f^{\prime}, f\right)$. In order to do this we enforce that equation (3) be satisfied to the highest possible order in r using the power series expansion of the solution of equation (1) $f(r)$, around $r=0$. Having found the constants $G_{i j}$ this way, we can now impose the BC at $r=\infty$ for $f(r)$ in equation (3) which amounts to

$$
\begin{equation*}
\sum_{j} G_{N j}\left(f_{\infty}\right)^{j}=0 \tag{4}
\end{equation*}
$$

Since the coefficients $G_{i j}$ depend on k_{n} (they turn out to be rational functions), equation (4) represents a polynomial equation for k_{n}. There is no a priori condition on the degree of the polynomials $G_{i}(f)$, we have chosen to impose $\operatorname{deg}\left(G_{i}\right) \leqslant 2 i$. We remark that this restriction on the degree is known to be a necessary (but not sufficient) condition for the absence of movable branch points in equation (3). Our main observation is that in the set of real roots,

Table 1. Convergence of the approximants for the connection parameters of the global vortex for $n=1,2,3,4$.

N	k_{1}	k_{2}	k_{3}	k_{4}
3	0.585	-	-	-
4	0.5831	-	0.021	-
5	0.58315	0.1527	0.025	-
6	0.583190	0.1529	0.0264	0.0028
7	0.5831894	0.15310	0.026183	0.0034
8	0.5831894936	0.15309	0.026185	0.0033
$k_{\text {num }}$	0.5831894959	0.1530991029	0.02618342072	0.00332717340

\mathcal{S}_{N}, of (4) one can find a root, r_{N}, which seems to converge to the value of the connection parameter and the corresponding trajectory, $f_{N}(r)$, of (3) yields a global approximation to the solution of the 2 p. BVP of equation (1). The main problem in our method is to identify the 'good' root in \mathcal{S}_{N}. At this point, we also note that our method performs a kind of resummation from the local power series expansion through the auxiliary ODEs, nevertheless we see no obvious relation to more standard resummation techniques such as the Borel technique or Padé approximants, see the monograph [4] for a nice review of these and other approximation techniques.

We now show in detail how our method works for the simplest case $N=1$ and for vorticity $n=1$. Without loosing generality one can assume $k_{1}>0$. In order to obtain a nontrivial result for $N=1$ we have to take in equation (3) for $G_{1}(f)$ a polynomial of degree two, i.e. the simplest auxiliary ODE is a Ricatti equation:

$$
\begin{equation*}
f^{\prime}+G_{10}+G_{11} f+G_{12} f^{2}=0 \tag{5}
\end{equation*}
$$

Using the power series expansion of $f(r)$ (by solving equation (1)), $f(r)=k_{1} r-k_{1} r^{3} / 8+\cdots$, it is easy to obtain the coefficients $G_{1 i}$ in equation (5): $G_{10}=-k_{1}, G_{11}=0, G_{12}=3 /\left(8 k_{1}\right)$. Therefore, the solution of equation (4) corresponding to the $\mathrm{BC}(2)$ is $k_{1}=\sqrt{3 / 8}=0.612 \ldots$, which constitutes a reasonable first approximation for k_{1} (see table 1 for the numerical value, $k_{1 \text { num }}$) and by solving equation (5) one obtains quite a good approximation for the vortex profile function, $f(r)$.

To improve upon this approximation one could keep $N=1$ fixed and increase only the degree of $G_{1}(f)$; however, since this scheme is not sufficiently general (it works quite well in some, but not in all cases), we rather consider the next member, $N=2$, in our auxiliary ODE sequence with $\operatorname{deg}\left(G_{i}\right)=i$. In this case, we have to expand $f(r)$ in equation (1) up to order 5 , and repeating the same procedure as for $N=1$, one finds for the coefficients $G_{i j}$: $G_{10}=k_{1}\left(80 k_{1}^{2}+1\right) / D_{1}, G_{11}=0, G_{20}=-2 k_{1}^{2}\left(20 k_{1}^{2}+7\right) / D_{1}, G_{21}=0, G_{22}=81 /\left(8 D_{1}\right)$, with $D_{1}=13-40 k_{1}^{2}$. Therefore, equation (4) reduces to

$$
\begin{equation*}
320 k_{1}^{4}+112 k_{1}^{2}-81=0 \tag{6}
\end{equation*}
$$

whose positive real root is $k_{1}=\sqrt{(-7+\sqrt{454}) / 40}=0.598 \ldots$, which compares rather satisfactorily with $k_{\text {lnum }}$, considering the simplicity of the calculations. At this stage, it is natural to ask how this approximation changes keeping $N=2$ fixed but increasing the degree of G_{j} to $2 j$. Repeating the computations for this equation (4) yields $1+368 k_{1}^{2}-2400 k_{1}^{4}+3840 k_{1}^{6}=$ 0 , which has two real positive roots, $0.587 \ldots$ and $0.531 \ldots$. Now $0.587 \ldots$, is a better approximation than the previous one, however there is also a second 'spurious' root, $0.531 \ldots$, which needs to be excluded. The appearance of such 'spurious' roots for increasing N and for increasing degrees of G_{j} is a general feature and it is a main drawback of the method. In

Table 2. Convergence for the ground-state energy of the anharmonic oscillator, E_{N} for $N=3,4,5$ and 10

β	E_{3}	E_{4}	E_{5}	E_{10}	E_{v}
0.2	0.51	0.562	0.5598	0.5591455	0.5591463
1	0.78	0.704	0.6984	0.6961795	0.6961758
2	0.90	0.813	0.8065	0.8037773	0.8037707
4	1.08	0.965	0.9548	0.9515767	0.9515685
100	2.85	2.56	2.502	2.4983125	2.4997088
400	4.49	4.02	3.931	3.930989	3.9309313
2000	7.65	6.86	6.692	6.694321	6.6942209
40000	20.7	18.6	18.13	18.13751	18.137229
2×10^{6}	76.3	68.4	66.76	-	-
2×10^{9}	763	684	667.6	-	-

practice, however, this does not necessarily causes too serious problems, since one can easily follow the 'good' roots by continuity and checking their stability against changing N and the degrees of G_{j}. In the following, unless indicated otherwise, we shall choose the degree of the polynomials G_{j} to be j, this fixes the global degree of $F^{N}\left(f^{\prime}, f\right)$ to be N. In this case, there are altogether $(N+1)(N+2) / 2$ constants $G_{i j}$ to be determined, and the order of the power series in r to be used has to be chosen accordingly. We present the approximate values of the connection parameter k_{n} for $n=1, \ldots, 4$ up to $N=8$ in table 1 . Remarkably for $n=1$ the $N=8$ approximation yields eight correct digits compared with $k_{1 \text { num }}$. For increasing values of n the order of the series in r must also be increased for a given degree of $F^{N}\left(f^{\prime}, f\right)$ and consequently the degree of the polynomial in k_{n} is greater. We stress that all computations are analytic (they have been performed on a standard desktop computer using Mathematica 5.2), except to find the roots of the corresponding polynomial where numerical methods became inevitable.

Next we show that our method also yields good results for an important eigenvalue problem, the determination of the energy levels of the quartic anharmonic oscillator in 1 dimension. Using dimensionless variables, the Schrödinger equation can be written as

$$
\begin{equation*}
f^{\prime \prime}(x)+\left(2 E-\beta x^{4}-x^{2}\right) f(x)=0 \tag{7}
\end{equation*}
$$

where β is the coupling parameter and E is the energy eigenvalue ${ }^{3}$. The 2 p . BPV for the ground-state wavefunction (which is even) can be put in the form $f(x=0)=1, f(x \rightarrow$ $\infty)=0$. For $N=3$, one obtains the following algebraic equation for the eigenvalue E :
$-6408 E^{6}+12960 \beta E^{5}+2356 E^{4}-2976 \beta E^{3}-2\left(1440 \beta^{2}+133\right) E^{2}+168 \beta E+25=0$.

The harmonic oscillator corresponds to $\beta=0$, whose exact ground-state energy is $E=1 / 2$. For $\beta=0$ there is a single positive real root of equation (8), $0.5166 \ldots$, and the choice of the roots for $N=3, E_{3}$, in table 2 has been done by following this root as β has been varied. We summarize our results for $N=3,4,5$ and10 in table 2 , where we also compare them with the known ones in the literature [5] denoted as E_{v}. One can thus see that our method yields very good approximate values for the ground-state energy of the anharmonic oscillator for all values of the coupling. We remark that some of the other real roots of the polynomial in E are related to the energy levels of the excited states and by our method one can also obtain approximate values for them, but we will not elaborate on this point here.

[^0]Let us next present here some results on the simplest 'skyrmion' solution, which is of considerable interest as a good approximation for baryons, we refer to the recent monograph [3] for details. The pertinent ODE for the spherically symmetric skyrmion field can be written as

$$
\begin{equation*}
\left(r^{2} f^{\prime}\right)^{\prime}+2 f^{\prime \prime} \sin ^{2} f+\sin (2 f)\left[f^{\prime 2}-1-\left(\sin ^{2} f\right) / r^{2}\right]=0 \tag{9}
\end{equation*}
$$

together with the BCs $f(r)=\pi+k r+\mathcal{O}\left(r^{3}\right), f \rightarrow 0$ for $r \rightarrow \infty$. In this case when applying our method we have found that the choice $\operatorname{deg}\left(G_{i}(f)\right)=2 i$ yields significantly better results than $\operatorname{deg}\left(G_{i}(f)\right)=i$. This way we find for the connection parameter: $k=-2.084$ for $N=2$; $k=-1.996$ for $N=3$ and $=-2.003$ for $N=4$, whereas $k_{\text {num }}=-2.007$. The agreement is quite satisfactory taking into account the relatively low degree of the auxiliary equations (3).

An important physical quantity is the total energy of such localized solutions. For example, the energy of the skyrmion in a ball of radius R is given as $E(R)=\int_{0}^{R} \mathcal{E} \mathrm{~d} r$, where \mathcal{E} is the energy density:

$$
\begin{equation*}
\mathcal{E}=\left[r^{2} f^{\prime 2}+2\left(1+f^{\prime 2}\right) \sin ^{2} f+\left(\sin ^{4} f\right) / r^{2}\right] /(3 \pi) \tag{10}
\end{equation*}
$$

and the total energy is then $E(\infty)$. The direct way to compute approximate values for the energy, i.e., finding the corresponding solutions of the auxiliary ODE (3) first and then evaluating $E(R)$ for them would be quite difficult without resorting to numerics. We can apply a slight variation of our method, however, to obtain approximate values for the total energy once the value of the connection parameter is known. To do this, we consider the sequence $\left\{F^{N}(\mathcal{E}, E)=0\right\}$. Since the power series expansion of the energy, $E(r)$, is completely fixed for any given value of the connection parameter, k, all the coefficients, $G_{i j}$, will be determined. Then, we solve the corresponding algebraic equation (4) for the unknown value of $E(\infty)$. This way for $N=9$ we have obtained $E(\infty)=1.22$, which seems to be quite good when compared to the numerical value, $E_{\text {num }}=1.23$.

We consider now some ODEs originating from a completely different problem, the fixed point equation of Wilson's exact renormalization group (RG). The RG equation for scalar field theories in the local potential approximation can be written as [6]

$$
\begin{equation*}
2 f^{\prime \prime}(x)-4 f(x) f^{\prime}(x)-5 x f^{\prime}(x)+f(x)=0 \tag{11}
\end{equation*}
$$

where $f(x)=V^{\prime}(x)-x$ and $V(x)$ is the potential. The pertinent solution of (11) is an odd function of x and for $x \rightarrow 0 f(x)=k x+\mathcal{O}\left(x^{3}\right)$. For large values of $x f(x \rightarrow \infty) \rightarrow a x^{1 / 5}$ where a is a constant. Since in the present case $f_{\infty}=\infty, f^{\prime \prime} \rightarrow 0$ and $f^{\prime} \rightarrow 0$ for $x \rightarrow \infty$, it is rather natural to slightly modify the method by considering the auxiliary ODEs (3) for $\left(f^{\prime \prime}, f^{\prime}\right)$, i.e. $F^{N}\left(f^{\prime \prime}, f^{\prime}\right)=0$. Then proceeding exactly as before we obtain a polynomial equation in k, and we find with a good convergence $k=-1.22859876$ for $N=6$. This agrees quite well with the numerical value $k_{\text {num }}=-1.22859820$ [7].

Let us consider yet another example, the Wegner-Houghton's fixed point equation in the local potential approximation [8],

$$
\begin{equation*}
2 \ln \left(1+v^{\prime \prime}(x)\right)+6 v(x)-x v^{\prime}(x)=0 . \tag{12}
\end{equation*}
$$

The change of dependent variable, $f(x)=v^{\prime}(x)$, gives the simpler differential equation

$$
\begin{equation*}
2 f^{\prime \prime}(x)+\left[1+f^{\prime}(x)\right]\left[5 f(x)-x f^{\prime}(x)\right]=0 \tag{13}
\end{equation*}
$$

The solution of interest satisfies the following BCs: $f(x \rightarrow 0)=k x+\mathcal{O}\left(x^{3}\right)$ and $f(x \rightarrow \infty) \rightarrow a x^{5}$ where a is a constant. The connection parameter, k, obtained numerically is $k_{\text {num }}=-0.461533$ [6]. The problem is similar to the precedent one but we use now higher derivatives, $F^{N}\left(f^{(7)}, f^{(6)}\right)=0$. Proceeding in the same way that in the previous case we

Table 3. Connection parameters for the vortex and the magnetic monopole with $N_{1}=3, N_{2}=4$.

β	c_{1}	c_{2}	$c_{1 \text { num }}$	$c_{2 \text { num }}$	d_{1}	d_{2}	$d_{1 \text { num }}$	$d_{2 \text { num }}$
0	-	-	-	-	0.3329	0.1523	$1 / 3$	$1 / 6$
1	0.8542	0.5007	0.8532	0.5000	0.7343	0.3422	0.7318	0.3409
2	1.0996	0.6169	1.0993	0.6166	1.0692	0.4501	1.0683	0.4491
3	1.2846	0.6975	1.2843	0.6969	1.4025	0.5350	1.4003	0.5321
4	1.4393	0.7609	1.4387	0.7597	1.7406	0.6100	1.7339	0.5997
5	1.5748	0.8137	1.5741	0.8119	2.0872	0.6901	2.0701	0.6567
6	1.6972	0.8595	1.6962	0.8569	2.4421	0.7834	2.4091	0.7060
7	1.8097	0.9001	1.8082	0.8967	2.8035	0.8938	2.7503	0.7492
10	2.1052	1.0011	2.1024	0.9944	3.6269	0.9678	3.7850	0.8542

obtain $k=-0.46144 \ldots$ for $N=6$ which agrees with the numerical value, although not so well as in the previous case, probably due to the use of derivatives of higher order.

We now show that our method can be generalized in a very simple way for a system of M ODEs for the set of unknowns $\left\{f_{m}(r)\right\}, m=1, \ldots, M$. We introduce for each unknown function a sequence of first-order auxiliary implicit ODE's $\left\{F_{m}^{N_{m}}\left(f_{m}^{\prime}, f_{m}\right)=0\right\}$, where $F_{m}^{N_{m}}\left(f_{m}^{\prime}, f_{m}\right)$ are polynomials of degree N_{m} in f_{m}^{\prime} (cf equation (3)). The constant coefficients in $F_{m}^{N_{m}}\left(f_{m}^{\prime}, f_{m}\right)$ are determined by demanding that $\left\{F_{m}^{N_{m}}\left(f_{m}^{\prime}, f_{m}\right)=0\right\}$ be satisfied to the highest possible order in the power series solutions of f_{m} at the origin, say. Then proceeding exactly as for the case of a single unknown we impose the BC at infinity and obtain a system of algebraic equations of the form $\sum_{j} G_{N_{m} j}\left(f_{m}^{j}(\infty)\right)=0$ for the connection parameters. As a concrete illustration we shall consider the field equations of the static, rotationally symmetric, gauged vortex of Nielsen-Olesen [9] and those of the 't Hooft-Polyakov magnetic monopole [10].

The differential equations determining the cylindrically symmetric magnetic potential resp. scalar fields, a, f in the plane of the Nielsen-Olesen vortex with a single magnetic flux quantum can be written as

$$
\begin{align*}
& r\left(r f^{\prime}\right)^{\prime}-f\left[(1-a)^{2}-r^{2} \beta\left(1-f^{2}\right)\right]=0, \tag{14a}\\
& r a^{\prime \prime}-a^{\prime}+2 r(1-a) f^{2}=0 \tag{14b}
\end{align*}
$$

where β corresponds to the self-coupling of the scalar field. The BCs necessary to ensure regularity and finite energy at $r=0$ and at $r=\infty$ are: $f=f_{1}=c_{1} r+\mathcal{O}\left(r^{3}\right)$, $a=f_{2}=c_{2} r^{2}+\mathcal{O}\left(r^{4}\right), f(\infty)=1, a(\infty)=1$. To implement our method we have chosen $F_{1}^{N_{1}}\left(f_{1}^{\prime}, f_{1}\right)$ to be a polynomial of degree N_{1} and $F_{2}^{N_{2}}\left(f_{2}^{\prime}, f_{2}\right)$ to be a polynomial of degree $N_{2}=N_{1}+1$ in order to have roughly the same number of terms in the algebraic equations for c_{1}, c_{2}. Next we recall the differential equations for the static spherically symmetric magnetic monopoles in a spontaneously broken $S U(2)$ gauge theory:

$$
\begin{align*}
& \left(r^{2} f_{1}^{\prime}\right)^{\prime}-f_{1}\left[2 f_{2}^{2}+\frac{r^{2}}{2} \beta^{2}\left(f_{1}^{2}-1\right)\right]=0 \tag{15a}\\
& r^{2} f_{2}^{\prime \prime}-f_{2}\left[\left(f_{2}^{2}-1\right)+r^{2} f_{1}^{2}\right]=0 \tag{15b}
\end{align*}
$$

where f_{1} and f_{2} correspond to the Higgs and the gauge field, respectively. The regular BCs at $r=0$ resp. $\quad r=\infty$ are $f_{1}=d_{1} r+\mathcal{O}\left(r^{3}\right), f_{2}=1-d_{2} r^{2}+\mathcal{O}\left(r^{4}\right), f_{1}(\infty)=1$ and $f_{2}(\infty)=0$. We present in table 3 our results for the connection parameters of both the vortex and the magnetic monopole for $N_{1}=3$ and $N_{2}=4$, and the corresponding numerical values from [11, 12]. The agreement is good, taking into account that the computations involving
two polynomials are more cumbersome; moreover, for both for small and large values of β, one needs to increase the values of N_{1} and N_{2} more and more. We recall here that for $\beta=0$ equations (15a) are analytically soluble, yielding $d_{1}=1 / 3, d_{2}=1 / 6$. We have also computed the total energy for $\beta=1$ applying the same procedure as for the skyrmion, and we have obtained $E(\infty)=1.2136$ for $N=10$ with $\operatorname{deg}\left(G_{j}\right)=2 j\left(\right.$ cf $\left.E_{\text {num }}=1.237\right)$.

In conclusion, we have presented a new algebraic scheme to obtain the connection parameters, the energy eigenvalues and the total energy for a number of physically interesting two-point boundary value problems associated with ODEs. The method is based on a sequence of auxiliary first-order implicit polynomial ODEs, which is determined from the series expansion of the solution to a given degree. Imposing the BCs for the solution of the auxiliary ODEs yields algebraic equations for the connection parameters. The computation of power series expansions and finding the roots of the algebraic equations are easily implementable on symbolic formula manipulation systems. It seems to be an interesting problem to clarify the mathematical basis of our method.

Acknowledgments

We would like thank Claude Bervillier for pointing out that the fixed point equations of the RG serve as interesting illustrations of our method and for his interest. We also thank him and Peter Breitenlohner for providing us various numerical results. One of us (BB) had also some interesting discussions with Stam Nicolis.

References

[1] Ginzburg V L and Pitaevskii L P 1958 Sov. Phys.-JETP 34858 Pitaevskii L P 1961 Sov. Phys.-JETP 13451
[2] Vilenkin A and Shellard E P S 1994 Cosmic Strings and Other Topological Defects (Cambridge: Cambridge University Press)
[3] Manton N and Sutcliffe P 2004 Topological Solitons (Cambridge: Cambridge University Press)
[4] Bender C M and Ország S A 1978 Advanced Mathematical Methods for Scientists and Engineers (New York: McGraw-Hill)
[5] Karrlein R and Kleinert H 1994 Phys. Lett. A 187133
[6] Bagnuls C and Bervillier C 2001 Phys Rep. 34891
[7] Bervillier C 2006 Private communication
[8] Hasenfratz A and Hasenfratz P 1986 Nucl. Phys. B 270687
[9] Nielsen H B and Olesen P 1973 Nucl. Phys. B 6145
[10] 't Hooft G 1974 Nucl. Phys. B 79276 Polyakov A M 1974 JETP Lett. 20194
[11] Forgács P, Reuillon S and Volkov M S 2006 Nucl. Phys. B 751390
[12] Forgács P, Obadia N and Reuillon S 2005 Phys. Rev. D 71 035002-1

[^0]: ${ }^{3}$ Note that our β corresponds to $g / 2$ of [5].

