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Abstract
A new (algebraic) approximation scheme to find global solutions of two-
point boundary value problems of ordinary differential equations (ODEs) is
presented. The method is applicable for both linear and nonlinear (coupled)
ODEs whose solutions are analytic near one of the boundary points. It is
based on replacing the original ODEs by a sequence of auxiliary first-order
polynomial ODEs with constant coefficients. The coefficients in the auxiliary
ODEs are uniquely determined from the local behaviour of the solution in
the neighbourhood of one of the boundary points. The problem of obtaining
the parameters of the global (connecting) solutions, analytic at one of the
boundary points, reduces to find the appropriate zeros of algebraic equations.
The power of the method is illustrated by computing the approximate values of
the ‘connecting parameters’ for a number of nonlinear ODEs arising in various
problems in field theory. We treat in particular the static and rotationally
symmetric global vortex, the skyrmion, the Abrikosov–Nielsen–Olesen vortex,
as well as the ’t Hooft–Polyakov magnetic monopole. The total energy of
the skyrmion and of the monopole is also computed by the new method. We
also consider some ODEs coming from the exact renormalization group. The
ground-state energy level of the anharmonic oscillator is also computed for
arbitrary coupling strengths with good precision.

PACS numbers: 02.30.Hq, 02.30.Mv, 02.60.Lj, 11.27.+d

It occurs quite often in physics (but of course also in other areas of science) that we have to
solve (singular) two-point boundary value problems (2p BVP) associated with a system of
ODEs. An important class of such BVPs for linear ODEs arises from eigenvalue problems
of the stationary Schrödinger equation either in one dimension or reduced to an ODE with
some (e.g. rotational) symmetry. Another large class of 2p BVPs for nonlinear ODEs stems
from the equations of motion of classical field theories reduced to ODEs (e.g. with some
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symmetries) and one could easily continue the list. We start with the example of the static,
rotationally symmetric global vortex in a Ginzburg–Landau effective theory [1], which has
numerous applications ranging from condensed matter to cosmic strings, see [2, 3]. The field
equation determining the vortex profile can be written as

f ′′(r) +
1

r
f ′(r) +

(
1 − n2

r2

)
f (r) − f 3(r) = 0, (1)

where f (r) is a real function, f ′ = df/dr , and n ∈ Z corresponds to the vorticity. The
physically interesting, globally regular solutions of equation (1) satisfy the following boundary
conditions (BC):

f (r → 0) = knr
n + O(rn+2), f (r → ∞) = f∞ = 1, (2)

and then a major problem of the 2p. BVP amounts to find the value(s) of the free parameter,
kn, to ensure the BC of f (r) at r = ∞.

It is not too difficult to integrate numerically equation (1), e.g., by the ‘shooting’ method
from r = 0 to some large value of r and determine kn to some precision but it is considerably
more difficult to obtain analytical results. The aim of this communication is to present a new
analytic procedure to approximate the value of kn for the connecting trajectory involving only
algebraic steps. Its basic input is the power series expansion of the solution around a point of
analyticity (typically at r = 0) and the BC at r = ∞. With this input our method reduces the
connection problem for kn to find the corresponding root of a polynomial equation. The method
is conceptually very simple, it is easy to apply and moreover it yields good approximations for
various ODEs. Our method is heuristic, we cannot put it on a mathematically rigorous footing
as yet, nor can we precisely define the class of ODEs to which it is applicable. Nevertheless,
it seems to us that with regard to its simplicity and its large applicability the new method is
of considerable interest for many applications (it yields with little effort good results for the
connection parameters of many nonlinear ODEs, the energy levels of the quartic anharmonic
oscillator for arbitrary values of the coupling, etc).

We illustrate our method in detail on the example of the global vortex (1). The first step
is to introduce the following sequence of auxiliary first-order polynomial (implicit) ODEs of
the form

FN(f ′, f ) := f ′N + G1(f )f ′N−1 + · · · + GN−1(f )f ′ + GN(f ) = 0, N = 1, 2 . . . ,

(3)

where Gi(f ) = ∑
j Gijf

j is a polynomial in f with constant coefficients. Such implicit
ODEs are not easy to handle in general, however, as it will be shown here, one can squeeze
out some important information from the sequence {FN(f ′, f ) = 0} without having to solve
them. The next step in our method is the determination of the unknown coefficients Gij in
FN(f ′, f ). In order to do this we enforce that equation (3) be satisfied to the highest possible
order in r using the power series expansion of the solution of equation (1) f (r), around r = 0.
Having found the constants Gij this way, we can now impose the BC at r = ∞ for f (r) in
equation (3) which amounts to∑

j

GNj (f∞)j = 0. (4)

Since the coefficients Gij depend on kn (they turn out to be rational functions), equation (4)
represents a polynomial equation for kn. There is no a priori condition on the degree of the
polynomials Gi(f ), we have chosen to impose deg(Gi) � 2i. We remark that this restriction
on the degree is known to be a necessary (but not sufficient) condition for the absence of
movable branch points in equation (3). Our main observation is that in the set of real roots,
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Table 1. Convergence of the approximants for the connection parameters of the global vortex for
n = 1, 2, 3, 4.

N k1 k2 k3 k4

3 0.585 – – –
4 0.5831 – 0.021 –
5 0.583 15 0.1527 0.025 –
6 0.583 190 0.1529 0.0264 0.0028
7 0.583 1894 0.153 10 0.026 183 0.0034
8 0.583 189 4936 0.153 09 0.026 185 0.0033

knum 0.583 189 4959 0.153 099 1029 0.026 183 420 72 0.003 327 173 40

SN , of (4) one can find a root, rN , which seems to converge to the value of the connection
parameter and the corresponding trajectory, fN(r), of (3) yields a global approximation to the
solution of the 2p. BVP of equation (1). The main problem in our method is to identify the
‘good’ root in SN . At this point, we also note that our method performs a kind of resummation
from the local power series expansion through the auxiliary ODEs, nevertheless we see no
obvious relation to more standard resummation techniques such as the Borel technique or
Padé approximants, see the monograph [4] for a nice review of these and other approximation
techniques.

We now show in detail how our method works for the simplest case N = 1 and for
vorticity n = 1. Without loosing generality one can assume k1 > 0. In order to obtain a
nontrivial result for N = 1 we have to take in equation (3) for G1(f ) a polynomial of degree
two, i.e. the simplest auxiliary ODE is a Ricatti equation:

f ′ + G10 + G11f + G12f
2 = 0. (5)

Using the power series expansion of f (r) (by solving equation (1)), f (r) = k1r −k1r
3/8+ · · ·,

it is easy to obtain the coefficients G1i in equation (5): G10 = −k1,G11 = 0,G12 = 3/(8k1).
Therefore, the solution of equation (4) corresponding to the BC (2) is k1 = √

3/8 = 0.612 . . . ,

which constitutes a reasonable first approximation for k1 (see table 1 for the numerical value,
k1num) and by solving equation (5) one obtains quite a good approximation for the vortex
profile function, f (r).

To improve upon this approximation one could keep N = 1 fixed and increase only the
degree of G1(f ); however, since this scheme is not sufficiently general (it works quite well
in some, but not in all cases), we rather consider the next member, N = 2, in our auxiliary
ODE sequence with deg(Gi) = i. In this case, we have to expand f (r) in equation (1) up to
order 5, and repeating the same procedure as for N = 1, one finds for the coefficients Gij :
G10 = k1

(
80k2

1 + 1
)/

D1,G11 = 0, G20 = −2k2
1

(
20k2

1 + 7
)/

D1,G21 = 0,G22 = 81/(8D1),
with D1 = 13 − 40k2

1 . Therefore, equation (4) reduces to

320k4
1 + 112k2

1 − 81 = 0, (6)

whose positive real root is k1 =
√

(−7 +
√

454)/40 = 0.598 . . . , which compares rather
satisfactorily with k1num, considering the simplicity of the calculations. At this stage, it is
natural to ask how this approximation changes keeping N = 2 fixed but increasing the degree of
Gj to 2j . Repeating the computations for this equation (4) yields 1+368k2

1−2400k4
1+3840k6

1 =
0, which has two real positive roots, 0.587 . . . and 0.531 . . . . Now 0.587 . . . , is a better
approximation than the previous one, however there is also a second ‘spurious’ root, 0.531 . . . ,

which needs to be excluded. The appearance of such ‘spurious’ roots for increasing N and
for increasing degrees of Gj is a general feature and it is a main drawback of the method. In
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Table 2. Convergence for the ground-state energy of the anharmonic oscillator, EN for
N = 3, 4, 5 and 10

β E3 E4 E5 E10 Ev

0.2 0.51 0.562 0.5598 0.559 1455 0.559 1463
1 0.78 0.704 0.6984 0.696 1795 0.696 1758
2 0.90 0.813 0.8065 0.803 7773 0.803 7707
4 1.08 0.965 0.9548 0.951 5767 0.951 5685
100 2.85 2.56 2.502 2.498 3125 2.499 7088
400 4.49 4.02 3.931 3.930 989 3.930 9313
2000 7.65 6.86 6.692 6.694 321 6.694 2209
40 000 20.7 18.6 18.13 18.137 51 18.137 229
2 × 106 76.3 68.4 66.76 − −
2 × 109 763 684 667.6 − −

practice, however, this does not necessarily causes too serious problems, since one can easily
follow the ‘good’ roots by continuity and checking their stability against changing N and the
degrees of Gj . In the following, unless indicated otherwise, we shall choose the degree of the
polynomials Gj to be j , this fixes the global degree of FN(f ′, f ) to be N. In this case, there
are altogether (N + 1)(N + 2)/2 constants Gij to be determined, and the order of the power
series in r to be used has to be chosen accordingly. We present the approximate values of the
connection parameter kn for n = 1, . . . , 4 up to N = 8 in table 1. Remarkably for n = 1 the
N = 8 approximation yields eight correct digits compared with k1num. For increasing values
of n the order of the series in r must also be increased for a given degree of FN(f ′, f ) and
consequently the degree of the polynomial in kn is greater. We stress that all computations are
analytic (they have been performed on a standard desktop computer using Mathematica 5.2),
except to find the roots of the corresponding polynomial where numerical methods became
inevitable.

Next we show that our method also yields good results for an important eigenvalue
problem, the determination of the energy levels of the quartic anharmonic oscillator in 1
dimension. Using dimensionless variables, the Schrödinger equation can be written as

f ′′(x) + (2E − βx4 − x2)f (x) = 0, (7)

where β is the coupling parameter and E is the energy eigenvalue3. The 2p. BPV for the
ground-state wavefunction (which is even) can be put in the form f (x = 0) = 1, f (x →
∞) = 0. For N = 3, one obtains the following algebraic equation for the eigenvalue E:

−6408E6 + 12960βE5 + 2356E4 − 2976βE3 − 2(1440β2 + 133)E2 + 168βE + 25 = 0.

(8)

The harmonic oscillator corresponds to β = 0, whose exact ground-state energy is E = 1/2.
For β = 0 there is a single positive real root of equation (8), 0.5166 . . . , and the choice of
the roots for N = 3, E3, in table 2 has been done by following this root as β has been varied.
We summarize our results for N = 3, 4, 5and10 in table 2, where we also compare them with
the known ones in the literature [5] denoted as Ev. One can thus see that our method yields
very good approximate values for the ground-state energy of the anharmonic oscillator for all
values of the coupling. We remark that some of the other real roots of the polynomial in E
are related to the energy levels of the excited states and by our method one can also obtain
approximate values for them, but we will not elaborate on this point here.

3 Note that our β corresponds to g/2 of [5].
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Let us next present here some results on the simplest ‘skyrmion’ solution, which is of
considerable interest as a good approximation for baryons, we refer to the recent monograph
[3] for details. The pertinent ODE for the spherically symmetric skyrmion field can be written
as

(r2f ′)′ + 2f ′′ sin2f + sin(2f )[f ′2 − 1 − (sin2f )/r2] = 0, (9)

together with the BCs f (r) = π + kr +O(r3), f → 0 for r → ∞. In this case when applying
our method we have found that the choice deg(Gi(f )) = 2i yields significantly better results
than deg(Gi(f )) = i. This way we find for the connection parameter: k = −2.084 for N = 2;
k = −1.996 for N = 3 and = −2.003 for N = 4, whereas knum = −2.007. The agreement is
quite satisfactory taking into account the relatively low degree of the auxiliary equations (3).

An important physical quantity is the total energy of such localized solutions. For example,
the energy of the skyrmion in a ball of radius R is given as E(R) = ∫ R

0 E dr , where E is the
energy density:

E = [r2f ′2 + 2(1 + f ′2) sin2 f + (sin4f )/r2]/(3π), (10)

and the total energy is then E(∞). The direct way to compute approximate values for
the energy, i.e., finding the corresponding solutions of the auxiliary ODE (3) first and then
evaluating E(R) for them would be quite difficult without resorting to numerics. We can apply
a slight variation of our method, however, to obtain approximate values for the total energy
once the value of the connection parameter is known. To do this, we consider the sequence
{FN(E, E) = 0}. Since the power series expansion of the energy, E(r), is completely fixed
for any given value of the connection parameter, k, all the coefficients, Gij , will be determined.
Then, we solve the corresponding algebraic equation (4) for the unknown value of E(∞).
This way for N = 9 we have obtained E(∞) = 1.22, which seems to be quite good when
compared to the numerical value, Enum = 1.23.

We consider now some ODEs originating from a completely different problem, the fixed
point equation of Wilson’s exact renormalization group (RG). The RG equation for scalar field
theories in the local potential approximation can be written as [6]

2f ′′(x) − 4f (x)f ′(x) − 5xf ′(x) + f (x) = 0, (11)

where f (x) = V ′(x) − x and V (x) is the potential. The pertinent solution of (11) is an odd
function of x and for x → 0 f (x) = kx + O(x3). For large values of x f (x → ∞) → ax1/5

where a is a constant. Since in the present case f∞ = ∞, f ′′ → 0 and f ′ → 0 for x → ∞,
it is rather natural to slightly modify the method by considering the auxiliary ODEs (3) for
(f ′′, f ′), i.e. FN(f ′′, f ′) = 0. Then proceeding exactly as before we obtain a polynomial
equation in k, and we find with a good convergence k = −1.228 598 76 for N = 6. This
agrees quite well with the numerical value knum = −1.228 598 20 [7].

Let us consider yet another example, the Wegner–Houghton’s fixed point equation in the
local potential approximation [8],

2 ln(1 + v′′(x)) + 6v(x) − xv′(x) = 0. (12)

The change of dependent variable, f (x) = v′(x), gives the simpler differential equation

2f ′′(x) + [1 + f ′(x)][5f (x) − xf ′(x)] = 0. (13)

The solution of interest satisfies the following BCs: f (x → 0) = kx + O(x3) and
f (x → ∞) → ax5 where a is a constant. The connection parameter, k, obtained numerically
is knum = −0.461 533 [6]. The problem is similar to the precedent one but we use now higher
derivatives, FN(f (7), f (6)) = 0. Proceeding in the same way that in the previous case we
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Table 3. Connection parameters for the vortex and the magnetic monopole with N1 = 3, N2 = 4.

β c1 c2 c1num c2num d1 d2 d1num d2num

0 − − − − 0.3329 0.1523 1/3 1/6
1 0.8542 0.5007 0.8532 0.5000 0.7343 0.3422 0.7318 0.3409
2 1.0996 0.6169 1.0993 0.6166 1.0692 0.4501 1.0683 0.4491
3 1.2846 0.6975 1.2843 0.6969 1.4025 0.5350 1.4003 0.5321
4 1.4393 0.7609 1.4387 0.7597 1.7406 0.6100 1.7339 0.5997
5 1.5748 0.8137 1.5741 0.8119 2.0872 0.6901 2.0701 0.6567
6 1.6972 0.8595 1.6962 0.8569 2.4421 0.7834 2.4091 0.7060
7 1.8097 0.9001 1.8082 0.8967 2.8035 0.8938 2.7503 0.7492
10 2.1052 1.0011 2.1024 0.9944 3.6269 0.9678 3.7850 0.8542

obtain k = −0.461 44 . . . for N = 6 which agrees with the numerical value, although not so
well as in the previous case, probably due to the use of derivatives of higher order.

We now show that our method can be generalized in a very simple way for a system of M
ODEs for the set of unknowns {fm(r)}, m = 1, . . . ,M . We introduce for each unknown
function a sequence of first-order auxiliary implicit ODE’s

{
FNm

m (f ′
m, fm) = 0

}
, where

FNm
m (f ′

m, fm) are polynomials of degree Nm in f ′
m (cf equation (3)). The constant coefficients

in FNm
m (f ′

m, fm) are determined by demanding that
{
FNm

m (f ′
m, fm) = 0

}
be satisfied to the

highest possible order in the power series solutions of fm at the origin, say. Then proceeding
exactly as for the case of a single unknown we impose the BC at infinity and obtain a system of
algebraic equations of the form

∑
j GNmj

(
f

j
m(∞)

) = 0 for the connection parameters. As a
concrete illustration we shall consider the field equations of the static, rotationally symmetric,
gauged vortex of Nielsen–Olesen [9] and those of the ’t Hooft–Polyakov magnetic monopole
[10].

The differential equations determining the cylindrically symmetric magnetic potential
resp. scalar fields, a, f in the plane of the Nielsen–Olesen vortex with a single magnetic flux
quantum can be written as

r(rf ′)′ − f [(1 − a)2 − r2β(1 − f 2)] = 0, (14a)

ra′′ − a′ + 2r(1 − a)f 2 = 0, (14b)

where β corresponds to the self-coupling of the scalar field. The BCs necessary to ensure
regularity and finite energy at r = 0 and at r = ∞ are: f = f1 = c1r + O(r3),
a = f2 = c2r

2 + O(r4), f (∞) = 1, a(∞) = 1. To implement our method we have chosen
F

N1
1 (f ′

1, f1) to be a polynomial of degree N1 and F
N2
2 (f ′

2, f2) to be a polynomial of degree
N2 = N1 + 1 in order to have roughly the same number of terms in the algebraic equations for
c1, c2. Next we recall the differential equations for the static spherically symmetric magnetic
monopoles in a spontaneously broken SU (2) gauge theory:

(r2f ′
1)

′ − f1

[
2f 2

2 +
r2

2
β2

(
f 2

1 − 1
)] = 0, (15a)

r2f ′′
2 − f2

[(
f 2

2 − 1
)

+ r2f 2
1

] = 0, (15b)

where f1 and f2 correspond to the Higgs and the gauge field, respectively. The regular BCs
at r = 0 resp. r = ∞ are f1 = d1r + O(r3), f2 = 1 − d2r

2 + O(r4), f1(∞) = 1 and
f2(∞) = 0. We present in table 3 our results for the connection parameters of both the vortex
and the magnetic monopole for N1 = 3 and N2 = 4, and the corresponding numerical values
from [11, 12]. The agreement is good, taking into account that the computations involving
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two polynomials are more cumbersome; moreover, for both for small and large values of
β, one needs to increase the values of N1 and N2 more and more. We recall here that for
β = 0 equations (15a) are analytically soluble, yielding d1 = 1/3, d2 = 1/6. We have also
computed the total energy for β = 1 applying the same procedure as for the skyrmion, and
we have obtained E(∞) = 1.2136 for N = 10 with deg(Gj ) = 2j (cf Enum = 1.237).

In conclusion, we have presented a new algebraic scheme to obtain the connection
parameters, the energy eigenvalues and the total energy for a number of physically interesting
two-point boundary value problems associated with ODEs. The method is based on a sequence
of auxiliary first-order implicit polynomial ODEs, which is determined from the series
expansion of the solution to a given degree. Imposing the BCs for the solution of the auxiliary
ODEs yields algebraic equations for the connection parameters. The computation of power
series expansions and finding the roots of the algebraic equations are easily implementable on
symbolic formula manipulation systems. It seems to be an interesting problem to clarify the
mathematical basis of our method.
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